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Abstract-In the present investigation a simple, efficient, versatile and easily adaptable, iterative
boundary element technique is presented for solving frictional contact problems with tensionless
bonding arising in the analysis ofcomposite shear walls and infilled frames. The method is developed
using the total deformation formulation and is based on logical steps to establish the contact
geometry and regions of slip, interface separation and adhesion. Numerical results are presented to
illustrate the method and demonstrate its effectiveness.

I. INTRODUCTION

The study of contact problems between deformable bodies is a modern direction in solid
mechanics with important applications in science and technique. These problems which
examine the behavior of inclusions embedded in elastic media have several useful appli
cations in civil engineering. The analysis of elastic media which are reinforced with elastic
inclusions is of considerable interest to the study of composite materials as well as to the
study of composite shear walls and infilled frames.

The contact problems are in general nonlinear and their solution in common for
mulation is possible only with the help ofpowerful computer systems and efficient numerical
methods, like the Finite Element Method (FEM) and the Boundary Element Method
(BEM). The interface between the inclusions and the surrounding elastic medium (matrix
material) can exhibit a variety of contact conditions ranging from perfect bonding, fric
tionless contact with or without separation and frictional contact with or without separation.
These problems can be categorized into three types:

(1) Contact without separation and friction, which is a linear and thus reversible
problem.

(2) Contact with separation, but without friction, which is a nonlinear but reversible
problem.

(3) Contact with separation and friction, which is a nonlinear and irreversible problem.
This type of problem is highly nonlinear not only because of the friction phenom
enon itself but also because of the changing boundary conditions. The solution
to the problem is path dependent and is unique only if the loading history is
prescribed.

Thus, when using numerical methods, contact problems have to be solved by iteration and
for the frictional case an incremental technique must also be used.

The most popular numerical technique used to perform elastic stress analysis of
contacting bodies is the FEM. Fredriksson (1976) employed the concept of a contact stress
increment vector and a slip increment vector at a contact surface, with a general slip criterion
to solve the incremental governing equations by means of a finite displacement method.
Okamoto and Nakazawa (1979) used a load incrementation theory with various frictional
conditions. Torstenfelt (1983, 1984) solved contact problems with friction using automatic
incrementation techniques in general-purpose FE computer programs. Heyliger and Reddy
(1987) introduced a mixed computational algorithm and corresponding finite element
model for the analysis of plane elastic contact problems assuming large deformations
and approximating the nodal displacements and stresses independently. Sachdeva and
Ramakrishnan (1981) developed a total deformation formulation procedure to deal with
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two-dimensional elastic contact problems with friction. Achyutha et al. (1986) presented a
simple iterative FE method to study the behavior of infilled frames with openings, taking
into consideration separation, slip and frictional loss at the interface of the infill and the
wall.

The BEM is particularly well suited for contact problems since only the boundaries
which are of primary interest in the solution procedure are treated and hence the interior
of the model does not need to be discretized as with finite differences or finite elements.
Hence the time required to model a problem using boundary elements is much shorter than,
for instance, for finite elements. Also, the boundary displacement and traction vector
unknowns are calculated with the same degree of accuracy and the normal and tangential
tractions can be coupled directly in the equation system. These are important features,
especially for problems such as contact. Andersson et al. (1980) applied the boundary
integral equation method to two-dimensional frictionless problems using constant elements
with successful results, and later extended the applications to frictional contact (Andersson,
1981). Andersson also treated the problem using linear parabolic elements (Andersson.
1982). In his approach, he uses the final deformed configuration as the state of reference
and assumes a point contact or a contact of finite length between the two bodies. This
analysis is based on the assumption of a single and open initial contact zone between two
bodies and is not easily and efficiently applied to the case of multiple contact zones between
several bodies, where there are coupled effects between the different contact areas. Moreover,
for the case of frictional contact Andersson employs an incremental procedure and estab
lishes a new area of contact at each load increment on the basis of a scaling procedure,
which requires a lot ofcomputer time, and inevitably restricts the analysis to a small system
of equations. Selvadurai and Ap (1985) studied the effects of inclusions embedded in an
elastic medium of finite extent. Paris and Garrido (1985) used discontinuous elements to
solve typical two-dimensional friction contact problems. They also used an incremental
procedure to study the case of friction contact problems where more than one contact zone
and more than one chapter of load are involved (Paris and Garrido, 1988). Garrido et al.
(1989) dealt with three-dimensional contact problems, assuming an elastic behavior in the
contacting bodies and confining the analysis to frictionless surfaces and initially conforming
contact. Gakwaya and Lambert (1989) presented a numerical algorithm for the solution of
a three-dimensional quasi-static contact problem with friction using a boundary element
and mathematical programming approach. Takahashi and Brebbia (1988) analysed contact
problems with and without friction using discontinuous constant elements and sub
structuring techniques, and Jin et al. (1987) employed an incremental friction theory based
on the nonlocal and nonlinear friction law aimed at a more fundamental modeling of the
microscopic mechanism of the friction phenomenon.

In the present investigation a simple, efficient, versatile, easily adaptable and com
putationally fast, iterative boundary element technique is described for solving frictional
contact problems with tensionless bonding arising in the analysis of composite shear walls
and infilled frames. The method is developed using the total deformation formulation and
is based on logical steps to accurately predict the contact geometry and regions of slip,
interface separation and adhesion. The proposed approach uses the initial undeformed
configuration as a state of reference where the matrix and inclusions are assumed to be
completely bonded along the interfaces. It accounts for complicated geometries, arbitrary
loading, any type of boundary conditions and multiple inclusions. This algorithm is appli
cable to proportional loading cases only. However, the method can easily be generalized
for nonproportional loading cases by giving small load increments and using an iterative
procedure for convergence in each incremental step. It is simple in nature and needs very
few iterations for convergence. Several test and practical examples are presented showing
the validity, versatility and effectiveness of the method.

2. FORMULATION OF THE PROBLEM

Consider a shear wall of arbitrary shape (Fig: 1) consisting of a matrix material
occupying a two-dimensional region R j in the X 1X2 plane with modulus of elasticity, E\,
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Fig. 1. Geometry, loading and support conditions of a composite shear wall.
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and Poisson's ratio, vh and surrounding a finite number ofinclusions (infill walls) occupying
the regions Rk with elastic constants, Ek and Vk (k = 2,3, ... , K), and a Coulomb frictional
coefficient,~h between the two surfaces in contact. The material of the matrix and inclusions
is assumed to be homogeneous, isotropic and linearly elastic. The constant thickness h I of
the matrix material and hk ofthe kth inclusion are small compared with the otherdimensions
so that the assumptions of the plane stress problem are satisfied. Let the boundaries of the
regions Rk be denoted by Ck (k = 2,3, ... ,K) and the external boundary by Cr, as shown
in Fig. 1; then the boundary C 1 of the matrix will be C1 = CTv C2 v C3 v ... vex. The
boundary curves Ck (k = 1,2, ... , K) are piecewise smooth, that is they may have a finite
number ofcorners. If any of the regions Rk are holes the problem can be solved by treating
its boundary as an exterior one.

The loading of the wall is applied symmetrically with respect to its middle plane and
consists of:

(a) Loads acting on the boundary: distributed traction t(s), concentrated forces T(t)

(i = 1,2, ... , n1) and concentrated moments M(t) (i = 1,2, ... , n2)'
K

(b) Loads acting inside R*::::: URk (body forces): distributed body forces b(x), line
k= 1

loads I(s) distributed along a curve L, concentrated forces B(i) (i = 1,2, ... , n3) and
concentrated moments M(I) (i = 1,2, ... , n4)'

Regarding the support conditions of the wall its boundary may be

(a) Free (second boundary value problem).
(b) Clamped or subjected to prescribed displacements along the entire boundary (first

boundary value problem), along parts of it and or at discrete points (mixed
boundary value problem).

(c) Elastically supported along a part or at discrete points of the boundary.
(d) Simply supported in a prescribed direction at a point.

With the assumption that the thickness of the shear wall is small compared to its other
two dimensions the resulting state of stress is two-dimensional, thus, the stress, the strain,
and the displacement components depend only on the XhX2 coordinates (plane stress
problem). In this case, the governing equations of the problem in terms of the displacements
in each region Rk (k = 1,2, ... ,K) are the Navier equations of equilibrium:

2 I 0 (auj ) I ..V uI+-I 2- -;- ;l + -0 hi = 0, (t,] = 1,2),
- Vk uXI uXj k

(1)
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where Gk is the shear modulus and Vk = 1/(1 +Vk) is the effective Poisson's ratio of the kth
material; V2 = 0210xr +02lox~ is the two-dimensional Laplace operator.

We denote by Cu the part of the boundary on which the displacements are prescribed
and by Ct its complementary part on which the tractions are prescribed (it is Cu u C, = Cf,
Cu n Ct = {0}) then the following boundary conditions must be satisfied:

U; = u;(s) on Cu ,

t; = tieS) on Ct ,

(2a)

(2b)

where u;(s) and tieS) are prescribed functions of the arc length along the boundary.
When a part Ce of the boundary is elastically supported the following boundary

conditions must be satisfied:

if. I (s)un +PI (s)tn = Y I (s),

if.z(s)us +P2(S)t, = Y2(S),

(3a)

(3b)

in which if.;(s), pieS) and y;(s) (i = 1,2) are given functions defined on the boundary; and
Un> tn' U., ts are the displacement and traction components on the boundary in the normal
and tangential directions. Notice that the boundary conditions (~a), (3b) are the most
general case of linear boundary conditions, from which all other boundary conditions can
be derived by specifying appropriately the functions if.;(s), pieS) and y;(s).

Furthermore, additional boundary conditions (contact conditions) must be satisfied
on the interfaces Ck (k = 2,3, ... ,K) between matrix and inclusions. These boundary
conditions are established from the following physical considerations which are based on
the type of contact between the two elastic bodies:

(i) Perfect bonding
The traction components are equal in magnitude and opposite in direction, while the

displacement components remain continuous across the interface. These conditions can be
expressed in equation form as:

(4a)

(4b)

(ii) Bilateral contact with slipping
The traction components are equal in magnitude and opposite in direction. Moreover,

the traction components in the tangential direction satisfy the Coulomb frictional law and
the displacement components in the normal direction are equal in order to preserve the
continuity in this direction. These conditions are written as:

(5al

(5b)

(5c)

where the subscripts nand s denote the normal and tangential directions (Fig. 1), respec
tively, /1 is the friction coefficient and the sign in the third condition is chosen to oppose the
relative motion at the surface. The case /1 = 0 refers to a frictionless contact.

(iii) Interface separation
In this case the displacement continuity is lost along a part of the interface and the

separated boundaries are free of tractions. The interface conditions are written as:
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t}l) = 0,
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(6a)

(6b)

The integral representation of the solution for the points on the boundary Ck

(k = 1,2, ... , K) is given by the following integral representation (Katsikadelis and
Kokkinos, 1987) :

1Uy)(X) = r [tik)(~)Uij)(~,x)-uik)(~)TiJl(~,x)]ds~Jc,

+t fW)(Z)Uij)(Z, x) dazo (i,j= 1,2), (7)

where x, ~ E Ck and Z E Rk • The indices of the elements ds and da denote the point which
varies during integration. Uij(~' x) and Tij(~' x) are two-point tensors denoting displacement
and traction, respectively, at point x in the direction of the Xi axis due to a unit concentrated
force at point ~ in the direction of the xj axis (Katsikadelis and Kokkinos, 1987).

Equation (7) relates the displacements Ui to the tractions t; on the boundary Ck • They
are integral equations which may be solved together with the boundary conditions (2a, b)
or (3a, b) and the contact conditions (4a, b), (5a-e) and (6a, b) to establish the unknown
boundary displacements Ui and tractions ti • Subsequently, the displacements inside the
region Rk are given as (Katsikadelis and Kokkinos, 1987):

uy)(X) = r [tik)(~)UiJl(~,X)-uik)(~)TiJl(~,X)]ds~Jc,

+t fW)(Z)Uij)(Z, X) do-zo (i,j= 1,2), (8)

where X(x [, X 2) and Z(z [, z2) are points inside the region Rk while ~(~ [, ~ 2) are points on
its boundary, Ck •

3. NUMERICAL IMPLEMENTATION

The boundary integral representation of the solution and its numerical treatment is
obtained using the boundary element approach presented by Katsikadelis and Kokkinos
(1987). In this investigation the boundaries CT, C 2 , ••• , CK are divided into NT,N2 , ••• , N K

boundary elements, respectively. The elements are not necessarily equal. The elements on
the external boundary are numbered consecutively counterclockwise while on the internal
boundaries they are numbered clockwise (Fig. 2). The values of the unknown boundary
functions uik) and tik) (i = 1,2; k = 1,2, ... , K) are assumed constant on each element (step
function assumption) and equal to their values at the nodal point ofeach element. Moreover,
the boundary element is approximated by a parabolic arc (Katsikadelis and Sapountzakis,
1985).

Denoting by [u]m and [t]m the displacement and traction components at the nodal point
m, of the discretized boundary, eqn (7) is written as:

s,

N N

Hu]~) = L [G]~l[tli') - L [H]~/[uli') + [F]~),
{~l (= 1

S,

(9a)

Hu]~) = L [G]~/[tW) - L [H]~/[uW) + [F]~),
{~S'_I+l {~S'_I+l

(m = Sk_ I + 1, Sk_1 + 2, ... ,Sk; k = 2,3, ... , K), (9b)
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2

Fig. 2. Typical discretization of the boundaries of a composite shear wall.

in which Sl = Nt, S2 = SI + N 2,···, Sk = Sk-l + Nk and SK = N, N = total number of
elements, and

IU~f(~, x) dS~] ,
IU~1(~, x) ds~

(lOa)

(lOb)

(tOc)

~el·element, x the m-nodal point and ZeRk •

Equations (9a, b) constitute a system of 2N+2(N - Nt) simultaneous linear algebraic
equations in 4N+4(N- Nt) unknowns. The additional4(N- Nt) +2N1which are required
to establish the unknown quantities are derived from the boundary conditions (3a, b),
(4a, b), (5a~) and (6a, b). More specifically, eqns (3a, b) applied to all nodal points of the
external boundary Cl, yield the following 2NT algebraic equations:

(11)

where the matrices [a]m, [fJ]m with dimensions 2 x 2 and the matrix [Y]m with dimensions
2 x 1, are given as:

(12)

in which a)ml, /3lm1 , y~ml (i = 1,2; m = 1,2, ... , Nt) are the values of the functions a,(s),
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Pi(S), Yi(S) at the nodal point m, and em is the angle between the Xl axis and the outward
normal vector nm to the boundary Cf at the nodal point m.

The remaining 4(N - NT) equations are obtained from the contact conditions applied
at the interface between the inclusions and the matrix material [eqns (4a, b), (5a-e) and
(6a, b)]. These equations are written in general form as:

[a]m[U]~)+ [b]m[u]~) = [0],

[c]m[t]~) + [d]m[t]~) = [0],

(m = Sk-l + 1, Sk-l + 2, ... ,Sk; k = 2,3, ... , K),

(13a)

(13b)

where the matrices [a]m, [b]m, [e]m and [d]m with dimensions 2 x 2, are defined according to
the type of contact at the m-element of the matrix - k th inclusion interface.

In practice the area of contact is not known a priori since some of the nodal points
lose contact, others may slip, while the rest may be bonded. The separation, slip and
frictional loss at the interface of the matrix and inclusions are allowed by the following
iterative procedure:

(1) The analysis is made with full contact at the interface.
(2) An algorithm is used to test the contact conditions and to determine if any changes

are required, according to the following steps:

(i) The normal tractions along the interface must be negative, otherwise the nodal
point is deleted from the possible contact zone and is inserted in the free zone.

(ii) If the ratio of a nodal traction in the tangential direction to the corresponding
nodal traction in the normal direction is greater than the friction coefficient,
slipping occurs.

(iii) If a node is in the contact zone and slipping is permitted, the tangential traction
and displacement must be in opposite directions. Otherwise the node will be
included in the adhesion zone for the next iteration.

(iv) Nodes on the free inclusion boundaries must not penetrate into the region of
the deformed matrix (material overlap). If this occurs then these nodes must
be reincorporated in the adhesion zone. It is worth noting that in this inves
tigation the penetration test is realized by examining the relative position of
the nodal points of the inclusion with respect to the deformed configuration
of the matrix boundary. Since the deformed boundary is described by the
displaced position of the nodal points, its deformed configuration is locally
approximated by a parabolic arc passing through the nodal point of con
sideration and its two adjacent nodal points (Fig. 3).

(3) Ifduring the second step there are no incompatibilities observed, then the procedure
has converged and a stable configuration has been obtained.

(4) All the changes detected in the second step are introduced into the boundary
conditions and the problem is solved again.

deformed inclusion deformed matrix boundary

boundary MATRIX (parabolic arc)

---~/J::LLLLWJJJJ~~llWI1J)~JLL1J
, ' i IUHp-- _(1~ -u(k) ""

ilJJJ--:/ U I I \. , ,
/ i \

'" i+1undeformed
i-1 interface

Fig. 3. Free inclusion node penetrating into the region of the deformed matrix (material overlap).
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Steps 2-4 are repeated until no separation, slip or displacement incompatibility occur. Once
the regions of contact and separation have been determined, the boundary quantities of the
problem will be known and then the displacement and stress components in the interior
of the elastic bodies are evaluated using the formulation presented by Katsikadelis and
Kokkinos (I 987).

4. NUMERICAL RESULTS

On the basis of the analysis and the numerical procedure presented in the previous
sections, a computer program has been written and numerical results have been obtained
for composite shear walls with a variety of shapes subjected to several types of loading. A
special emphasis is laid on the analysis of the complicated problem of infilled frames in
order to determine the effect of the wall characteristics and contact conditions at the
interface, on the overall stiffness of frame structures.

The first problem treated is a rectangular cantilever wall with a rectangular inclusion
(Fig. 4). The matrix material is characterized by modulus of elasticity Em = 106 N cm - 2,

0.80 2.00 0.80
c~~ ~-+--~~----- -~~-;-------I

(bl

I
I

:24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7
LJ) enru
c.D U1ru
r- 80 81 82 83 84 85 86 87 88 89 .cru
CO en c.D UJru r- 0

en CO c.D f\)ru r- -
0 r- to -en r- ------------------------ ~-------- --- 1---------

c.D en en
en r- - 0

ru LJ) 01 U1
en r- f\) to
en :::r en U1
en r- UJ CO

:::r IL OL 69 89 L9 99 S9 n9 U1
en EL 2L -...J

LJ) U1
en en
to (Jl
en U1

:LI:: BE 6E On In 2n En nn Sn 9h Lh Bn 6h OS IS 2S ES nS
I
I

Fig. 4. Loading, support conditions and discretization of rectangular cantilever wall with rectangular
inclusion. (a) Loading and support conditions. (b) Discretization of the boundaries (92 constant

elements).
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Poisson's ratio Vm = 0.30 and has thickness hm = 20 cm, while for the inclusion the cor
responding value\; are Ei = 2 x 105 N cm- 2, Vi = 0.15 and hi = 10 cm. The composite wall
is clamped at one end (uAx,y) = uy(x,y) = 0 at x = 0) and subjected to a uniform shear
load q = 500 N cm- 2 at the free end. The wall is analysed first assuming perfect bond along
the interface ABCD of the matrix and inclusion and then assuming tensionless contact
(p, = (0). The deformed configuration and the flow of principal stresses are given for both
cases in Figs 5 and 6, respectively. The distribution of the normal and shear matrix tractions
developed along the interface ABCD are given in Fig. 7 for the case of complete bond, and
in Fig. 8 for the case of tensionless bonding.

The second example is a plane strain problem. A very long structure having the
composite trapezoid cross-section of Fig. 9(a), is loaded with two uniform vertical loads of
magnitudes PI = 250 kN m- 2 and P2 = 2250 kN m- 2

, which remain constant along its

(a)

(b)

---------------------------
1

--------------------- 1

Fig. 5. Defonned shape of the composite cantilever wall. (a) Perfect bond. (b) Tensionless contact
(jl = (0).
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(a)

(b)

Fig. 6. Flow of principal stresses of the composite cantilever wall. (a) Perfect bond. (b) Tensionless
contact (I' = en).

length. The displacement pattern of a typical composite section (Em = 2 X 106 kN m 2,

Ei = 0.05Em , Vm = 0.30, Vi = 0.15) is presented for two types of contact: perfect bond and
frictional slip with f1 = 1.75 in Figs. lO(a) and 10(b). A more complicated plane strain
problem is given in Fig. 11. The elastic constants of the matrix are Em = 106 kN m - 2,

Vm = 0.25, of the first inclusion mI) = 0.05Em , vi I) = 0.15 and of the second
E1 2) = 0.20Em , vP) = 0.20. The friction coefficient is the same along both interfaces,
f1 = 0.75. The composite structure is subjected to a uniformly distributed vertical load
p = 800 kN m - 2 at the top and a uniform shear load q = 8000 kN m - 2 at the side (see Fig.
11). In Fig. 12, the deformed configuration for the case of perfect bond between the different
materials is compared to the one obtained assuming frictional contact with f1 = 0.75. The
distribution of the normal and shear stresses developed on the matrix along the two
interfaces is given in Figs 13 and 14, for both cases of contact conditions.
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Fig. 7. Distribution of normalized stresses (u;)q) along the matrix-inclusion interface of the can
tilever wall for the case of perfect bond. (a) Normal stresses. (b) Shear stresses.

Finally, an infilled frame is analysed in order to determine the effect of the geometry,
material characteristics and contact conditions at the interface, on the overall stiffness of
the structure. The concrete frame (matrix material) is clamped in the rectangular foundation
BCDE, which is firmly bonded to the elastic half space. The frame has modulus ofelasticity
Er = 2.1 x 107 kN m- 2, Poisson's ratio Vr = 0.20 and is subjected to shear loads p = 3 X 103

kN m- 2 at the top of its columns [Fig. 15(a)]. The infill of width b and height h, is
characterized by elastic constants Ew and Vw = 0.075. Both the frame and the infill wall have
thickness t = 0.25 m. Figures 15(a), 15(b) and 15(c) give the deformed configuration of the
frame without infill wall, with an infill wall perfectly bonded to the frame (Ew/Er = 0.20),
and with an infill wall being in frictional contact with the frame (Ew / Er = 0.20, Jl = 0.60),
respectively. Figure 16(a) depicts the lateral stiffness of the two-column frame (K = P/UA,
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(a)
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Fig. 8. Distribution of stresses (normalized. (J,,/q) along the matrix-inclusion interface of the
cantilever wall for the case of tensionless contact (I-' = CD). (a) Normal stresses. (b) Shear stresses.
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P = 2 x p x 0.60 x t) versus the ratio EwlEr of the elastic moduli for various combinations
of contact conditions. The stiffness variation is also presented graphically in Fig. 16(b) for
three different ratios of the dimensions of the infill wall (hlb, 1.5hlh and h/l.5b, with h = 3.20
m and h = 2.80 m). The parametric study of Fig. l6(b) reveals that, independently of the
wall dimensions, the variation of any infilled frame's lateral stiffness with respect to the
ratio of the elastic moduli, will be bounded within a zone that is defined only by the friction
coefficient at the interface of the two materials.

5. CONCLUDING REMARKS

An efficient boundary element approach is developed for the solution to the contact
problems appearing in composite shear walls and infilled frames. The proposed method
can accommodate all the variables like different material properties, complex nature of the
stress system existing at the interface of the matrix and inclusions, separation, slip and loss
of friction at the interface. It is an iterative technique simple in nature and converges very
fast (usually four iterations are adequate). The present work is based on the total deformation
formulation but can be easily extended to nonproportional loading cases by adopting an
increment-type alogorithm (nonlinear analysis).
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